
An Architecture for User-Centric Identity, Profiling and Reputation Services

Gennaro Costagliola, Rosario Esposito, Vittorio Fuccella, Francesco Gioviale
Department of Mathematics and Informatics

University of Salerno
{gencos,vfuccella,cescogio}@unisa.it, scalax.uep@virgilio.it

Abstract

This paper presents a work in progress whose objective
is the definition of a novel architecture for solving several
challenges related to Web navigation, such as accessing to
multiple Web sites through a single identity and verifying
the identity and the reputation of a peer involved in a trans-
action. The proposed model tries to solve the above chal-
lenges in an integrated way through the introduction of a
specialized Web Mediator acting on behalf of the user dur-
ing usage of the Net, identity providers for identity data cen-
tralization, and a two way negotiation system among parties
for mutual trust.

1. Introduction

The need for introducing new functionalities to improve
the user Web experience is more and more widely felt.
Lately, researchers are closely taking into account the fol-
lowing important issues:

1. Registering and accessing to multiple services using a
single identity for all services (single sign-on systems);

2. Verifying the identity and the reputation of a peer (user
or organization) involved in a transaction;

3. Keeping the property and control of personal informa-
tion such as: user profile, reputation, etc;

In this paper we propose an architectural model aimed at
pursuing the above objectives trough the introduction of a
Web Mediator (WM) acting on behalf of the user during
Web navigation and an Identity Provider for the identity
data centralization. The former is responsible for maintain-
ing user personal data and profile to use in content person-
alization (as similarly done in [1]). The latter is responsible
for keeping user identity and reputation data, and to vouch
for the user in registration and authentication procedures.

Our model enables a two way negotiation system among
parties for mutual trust: in a transaction both parties can mu-
tually authenticate and verify reputation and profile. This
sort of handshake, will allow them to decide whether the
transaction can go on or should stop. It is worth noting that
despite adding new functionalities to the actual Web appli-
cation interactions, the architecture works with the actual
Web protocols.

The advantages deriving from the availability of a solu-
tion to the three issues mentioned before are evident in sev-
eral scenarios occurring daily during Web navigation. For
instance, mutual trust is useful in the detection of phishing:
let us suppose a user receives an e-mail containing a link to
an important document about his/her bank account stored
on the bank Web site. By connecting to the link with our
framework enabled, the user can both check whether the
remote Web server supports the architecture and verify its
credentials. The phishing attempt can be immediately de-
tected in the former case and after a reputation check in the
latter case. The availability of user profile and reputation is
useful in many cases: i.e., profile is used for offering per-
sonalized services, reputation in on-line auction services.
Their availability to the user is advantageous since: data are
already available when a user starts requesting a service at
a new provider (it is not necessary to wait for a new profile
or reputation to be built); the user is owner of his/her per-
sonal data which can be used with different sites offering
the same services.

The above mentioned issues have been faced separately
so far, that is, to our knowledge, there are no proposals of
a generic architecture offering a solution for them all in lit-
erature. I.e., platforms for single sign-on [6] trust and rep-
utation management [3] are available, as well as methods
for preventing phishing [5]. In order to propose a unique
solution to the above challenges, we have decided to ex-
tend a well established SSO platform, OpenID [6], with the
support of a mutual trust establishment procedure. In par-
ticular, we have extended the OpenID Authentication pro-
cedure. The interaction among user’s and peer’s modules
involved in the procedure are described through the paper.



In our prototype, the Web browser can communicate with
user’s WM through a special plug-in.

The rest of the paper is organized as follows: in sec-
tion 2, we introduce the OpenID platform; the architectural
model, including a detailed description of the involved en-
tities and their interaction model, are presented in section
3. In section 4, we will describe the implemented prototype
and its instantiation in a real-life application scenario. Fi-
nal remarks and a discussion on future work conclude the
paper.

2. The OpenID Platform

OpenID was firstly developed in 2005 as a user-centric
and URI-based identity system. Its main objective was to
support the SSO functionality. The initial project has grown
and has evolved in a framework enabling the support of sev-
eral functionalities which can be added to the basic plat-
form.

The OpenID architecture components are: the user, the
remote Web-server (also know as Relying Party) where the
user wants to authenticate and the Identity Provider (IdP)
that provides vouch for user identity certification. OpenID
has a layered architecture. The lower layer is the Identi-
fier layer. This layer provides an unique identifier for ad-
dress based identity system. The address identifier (OpenID
URL) is used by the Relying Party (RP) to contact the user’s
Identity Provider and retrieve identities data. Both URL and
XRI [7] address formats are supported as identifiers.

The above layer is the service discovery layer. It is im-
plemented trough the Yadis protocol [4]. The purpose of
this layer is to discover various type of services reachable
through an identifier. In the case of OpenID it is used to
discover the Identity Provider location.

The third layer is the OpenID Authentication. The main
purpose of this layer is to prove that an user is the owner of
an OpenID URL and, consequently, of the connected user
data.

The fourth layer is the Data Transfer Protocol. This
protocol is used to transmit user related data from the IdP
to the RP. In OpenID Authentication 1.1 this layer is im-
plemented through the SREG protocol (Simple Registration
Protocol), which allows the transmission of simple account
related data [2]. Currently, the OpenID research community
is defining a new version of the protocol capable to transmit
various type of data other than identities related one.

3. The architecture

In this section we give a description of the proposed ar-
chitectural model, including the involved entities and their
interactions in a trusted negotiation, which is a typical in-
teraction where two parties gradually establish trust [8]. It

Figure 1. The OpenID layered architecture.

is based on the previously described OpenID platform, and
extends it to support the features outlined in the introduc-
tion.

Our model extends the OpenID platform by enabling the
establishing of mutual trust and the exchange of reputation
and profile data between two parties. In particular, it adds
Profile and Reputation layers upon the uppermost OpenID
layers and a Mutual Trust layer above them (Fig 2).

Reputation management service is provided as an exten-
sion of the DTP layer. In particular, the data model sup-
ported in the information exchange occurring at this layer
is extended with reputation data. The discussion on how to
represent, create and manage these data are out of the socpe
of this paper and will not be treated here.

User profile data are managed by the WM, which also
works as a profile provider, and can be accessed only after
the OpenID Authentication procedure is successfully com-
pleted.

The Mutual Trust layer implements the handshake pro-
cedure that will authorize the user application to proceed
with an interaction after identity, reputation and profile of
remote peer are checked.

In a typical scenario, our architecture is composed of the
following components:

A) The Web Browser equipped with a specific plug-in
(i.e. a Firefox add-on) to communicate with the WM;

B) A Web Mediator (WM): the software module respon-
sible to communicate with other remote peer WMs, in order
to perform a trusted negotiation. The WM can perform two
functions: issue a transaction request to remote peers WMs
or receive incoming transaction requests from remote peer
WMs. In the case it is the first to send a request will refer
to the WM as User Web Mediator (UWM); otherwise we
will refer to it as Remote WEB Mediator (RWM). More in
details, a WM, by referring to a preference table set by the
user, verifies the identity, reputation and profile of remote
peers and, after that all checks are passed, it authorizes the
application to proceed with the transaction. Furthermore,
in scenarios that needs this feature, it also checks that the
resource retrieved as a transaction result fits user’s prefer-
ences (i.e. content filters).

C) An Identity Provider (IdP), deployed on a third party
server, that is responsible for guaranteeing the veracity of
the credentials issued by the WMs; it is also responsible to

2



Figure 2. The proposed architecture.

Figure 3. The WM Handshake

provide, by extending the common data already passed dur-
ing an OpenID authentication, the reputation data.

D) The remote application that provides the requested
resource after being authorized to do so from the RWM.

Before we start to discuss the fundamental phases that
occurs in a transaction we will describe the WM Handshake
procedure between WMs in which UWM and RWM proceed
to establish a mutual trust with the help of one or more IdPs.
During this phase the WMs exchange profile and reputation
data and verify that the user parameters are satisfied. More
in details, as shown in figure 3:

1. UWM requests the OpenID URL to the RWM and re-
ceives it;

2. UWM starts the authentication procedure by contact-
ing RWM’s IdP which authenticates RWM and replies
with the RWM’s reputation data;

3. UWM recovers RWM’s profile data trough a GET re-
quest to the RWM using a standard URL;

4. UWM checks the received profile and the reputation
data and, if all checks are passed, sends its OpenID
URL to RWM;

5. RWM starts the authentication procedure by contact-
ing UWM’s IdP which authenticates UWM and replies
with UWM’s reputation data;

6. RWM recovers UWM’s profile data trough a GET re-
quest to the RWM using a standard URL;

7. RWM checks the received profile and the reputation
data and, if all checks are passed, sends an OK mes-
sage to UWM.

The authentications in step 2 and 5 follow the OpenID
protocol and consist of sending username and password to
the IdP (through a POST request) to prove to be the owner
of the identity related to the previously sent OpenID URL.

For sake of clarity no exceptions are shown in the pro-
cedure. In the case something goes wrong, the UWM is
the one in charge of notifying the user application that the
handshake did not succeed.

Note that, by following the previous steps, UWM is the
first to see the other’s reputation and profile data. Further-
more, the RWM will be able to access to the UWM data only
if it is considered worth to receive it. This is the UWM-first
version of our architecture. The RWM-first version is easily
obtained by letting the UWM start sending its own OpenID
URL and modifying the next steps accordingly.

In the following, we describe the complete transaction
between two Web applications (user and remote applica-
tions) by following the UWM-first approach (the other case
can be easily derived). More in detail, as shown in figure 4:

1. the user makes a request to the application to execute
a transaction with a remote application;

2. the user application contacts its UWM to obtain an au-
thorization for the transaction;

3. the WM Handshake between the corresponding UWM,
RWM and IdPs occurs as described above;

4. if the handshake succeeds, the UWM sends the shared
RWM OpenID authorization token to the user applica-
tion;

5. the user application sends its original request together
with the authorization token to the remote application;

6. the remote application uses the token to query its
RWM for the identification and profile of the requester
(as built with the UWM);

7. the RWM returns the required resource; from now on
the transaction between the two applications does not
involve the underlying levels.

In the case the WM Handshake does not succeed, the user
application, based on its configuration, may decide whether
to start or not a traditional transaction with the remote ap-
plication. In fact one of the advantages of this approach is
that it does not alter the current Web model.

In our lab, we have built a basic prototype implementing
the procedures above in the context of OpenID and applied
it to the case of browsing a simple web application.

3



Figure 4. The general architecture.

4. The Online Auction Websites case study

In this section we will show how our architecture can be
easily instantiated to a real-life application.

4.1. The case

Alice is an Ebaia power seller with a positive feed-
back rate of 99%. Thanks to her excellent reputation, Alice
reaches big sales volumes. During the Web surfing, Alice
finds a new online auction system, called Xbid that offers
more convenient commissions on sales. Alice, interested by
the offer decides to test the new system but then she finds a
serious obstacle: there are no ways to migrate her excellent
reputation data (that builds up in a long time span) from the
current system to the new one. Discouraged, she decides
not to try Xbid.

The adoption of our model, thanks to the relocation of
the reputation data on an Identity Provider, allows the user
to access to more online auction systems, even at the same
time, increasing the seller presence on the market. Also, due
to the centralized reputation data, users can compare sell-
ers on different auction platforms allowing a deeper level
of filtering. Last but not least, due to the buyers’ certified
identity, the seller is able to exclude malicious users that can
alter the auctions.

4.2. The implementation

The user application is the Web browser (the buyer’s one,
in this case) and the remote application is the auction system
Web server that will request to the seller RWM the autoriza-
tion to proceed with the transaction. The seller RWM will
be identified by the UWM due to a metatag link present in
the product page as usually done with OpenID delegation.
The transaction steps are then so instantiated:

1. the user selects the ‘buy now’ option;

2. the browser contacts the user UWM, through a plugin,
to obtain an authorization for the transaction;

3. the WM Handshake occurs;

4. if the handshake succeeds, the UWM sends the shared
RWM OpenID authorization token to the browser;

5. the browser sends the ‘buy’ request together with the
authorization token to the auction web system;

6. the auction system uses the token to query its RWM to
receive the authorization for the incoming request;

7. the auction system shows the payment procedure to the
user.

5. Conclusions

In this paper we have presented an architecture for im-
proving some aspects related to Web navigation. The work
is still in progress and, due to the complexity of the differ-
ent addressed issues, many aspects are still to be investi-
gated: some scenarios have been outlined and the architec-
tural model has been presented and tested in one of them.
As future work, we plan to test the architectural model in
many other scenarios and contexts.

References

[1] A. Ankolekar and D. Vrandečić. Kalpana - enabling client-
side web personalization. In HT ’08: Proceedings of the nine-
teenth ACM conference on Hypertext and hypermedia, pages
21–26, New York, NY, USA, 2008. ACM.

[2] J. Hoyt, J. Daugherty, and D. Recordon. Openid
simple registration extension 1.0. June 2006.
http://openid.net/specs/openid-simple-registration-extension-
1 0.txt.

[3] A. J, R. Ismail, and C. Boyd. A survey of trust and reputation
systems for online service provision. Decis. Support Syst.,
43(2):618–644, 2007.

[4] J. Miller. Yadis 1.0. March 2006.
http://yadis.org/papers/yadis-v1.0.pdf.

[5] Y. Oiwa, H. Takagi, H. Watanabe, and H. Suzuki. Pake-based
mutual http authentication for preventing phishing attacks. In
18th International World Wide Web Conference (WWW2009),
April 2009.

[6] D. Recordon and D. Reed. Openid 2.0: a platform for user-
centric identity management. In DIM ’06: Proceedings of
the second ACM workshop on Digital identity management,
pages 11–16, New York, NY, USA, 2006. ACM Press.

[7] D. Reed and D. McAlpin. Extensible resource identifier syn-
tax 2.0 (oasis xri committee specification). November 2005.
http://www.oasis-open.org/committees/download.php/15377.

[8] A. C. Squicciarini, A. Trombetta, E. Bertino, and S. Braghin.
Identity-based long running negotiations. In DIM ’08: Pro-
ceedings of the 4th ACM workshop on Digital identity man-
agement, pages 97–106, New York, NY, USA, 2008. ACM.

4


