
Java Portals and Java Portlet Specification and API

Gennaro Costagliola, Filomena Ferrucci, Vittorio Fu ccella
Dipartimento di Matematica e Informatica, Universit à di Salerno

Via Ponte Don Melillo, I-84084 Fisciano (SA)

{gcostagliola, fferrucci, vfuccella}@unisa.it

Introduction
Second generation Web portals distinguish themselves from first generation ones for their
architecture, which is component-oriented. In particular, the basic component constituting
them, is often referred to as portlet. The portal is responsible for aggregating information
coming from different sources, local or remote, available in the form of mark-up fragments.
Each of those fragments is produced by a portlet. In the context of web portals, the
possibility to deploy a portlet in any portal is particularly significant. To this extent, that is,
to achieve interoperability among portals, it has been necessary to define a standard way
to develop and deploy portlets. Two main standards have been defined and widely
adopted by producers: the Web Services for Remote Portlets (WSRP) and the Java Portlet
Specification and API (JSR 168). The former is more oriented to the definition of rules
about the use of remote portlets, the latter is focused on the definition of interfaces for the
development of portlets which can run in Java-based portals. The definition of a standard
specification for Java technology follows a specific process, known as the Java
Community Process, where several contributors, under the supervision of Sun
Microsystems, write and revise the draft of the specification several times until its final
publication as an approved standard. Most of the Java technologies, part of the Java 2
Enterprise Edition, the platform for the development and deployment of distributed
enterprise applications, follow a consolidated architectural model, called
container/component architecture. This model offers the chance to develop components
and deploy them on different containers. Both component and containers compliant to
specifications can be developed independently and commercialized by different software
vendors, thus creating a market economy on Java software. Furthermore, several good-
quality Open Source products compete with them. The JSR 168 follows the
container/component model and, as shown by a survey presented in the sequel, its
adoption has grown until it has become an important reference-point which cannot be
excluded from the projects aimed at the development of Web portals. An overview of JSR
168 follows: its content is summarized, starting from the definitions of portal, portlet and
portal container, and continuing with other important matters, such as how portal
technology relates to other Java technologies. Furthermore, a parade of the most
important existing implementations of the specification is presented.

Background
According to Bellas (2003), we are at the second generation of Web portals. The main
characteristic which distinguishes it from the previous, regards the architecture of such
Web based applications. A second generation portal has a component-oriented
architecture. Its adoption, compared to that of a monolithic architecture, typical (with
several exceptions) of the first generation portals, improves development, maintenance
and reusability.
One of the basic components of a web portal is the portlet. Such a software entity, is
responsible for rendering the mark-up fragment necessary for showing information or

providing a service coming from a source of the World Wide Web. The portal is
responsible for aggregating several portlets in the pages of a unique system,
homogeneous in its appearance, and tailored to the user preferences. The mark-up
fragment is directly generated by a service located on a remote host.
Some years ago, several vendors were already producing portals based on the
mechanism described above. A noteworthy example was Jetspeed, the portal of the
Apache Group, developed with J2EE technology. Almost each portal producer defined a
proprietary APIs for building portlets, resulting in a lack of interoperability.
Having to aggregate content from different sources, a fundamental step was to reach an
agreement between portals and portlet producers on the way in which portal could obtain
the HTML fragment for the portlets. The need for interoperability has often been the most
important reason to establish a standard. An early solution has been found defining the
Web Services for Remote Portlets (WSRP) standard: a Web service interface (defined in
Web Service Definition Language) through which portals can interact with the remote
producer’s portlets. The WSRP 1.0 specification (OASIS, 2003) was approved as an
OASIS standard in August, 2003. Being based on Web services, several interfaces to
adopt the standard have been developed for the most used technologies (e.g. J2EE, .NET,
and so on).
Some months later, a new important specification reached its final release: the Java
Specification Request 168 (Abdelnur & Hepper, 2003), also known as The Java Portlet
Specification. The need for JSR 168 was motivated by the inadequacy of the Servlet/JSP
specification to represent the high level concepts of a web portal application: even though
it is possible to build any Web-based application using Servlet/JSP specification, the
development of a portal needs deals with new concepts, such as portal, portlet and portlet
container. The scope of the specification was to develop an API set layer on the underlying
one of servlets. Contents treated in WSRP specification often overlap with those treated in
JSR 168. E.g., both define portlet view modes and window states. The main differences
reside in the location of the portlets and in the technologies: WSRP is more oriented to the
definition of mechanisms for the use of remote portlets, which can be developed using
different technologies. To this extent, it defines two standard Web service-based
interfaces: one for the description of the services provided by a portlet and another one for
the mark-up generation. The main benefit which can be gained by supporting the standard
is that a portlet, developed with whatever technology, can be deployed on a location and
displayed in several remote Web portals. JSR 168, instead, defines an interface suitable
for local portlets, developed with J2EE technology.
Several APIs and Java related technologies have been aligned together in a cohesive
development and deployment platform, called Java 2 Enterprise Edition (J2EE). A strong
point of J2EE is the support for component-oriented development, which simplifies the
development and maintenance of software and contributes to improving its quality. The
J2EE component-oriented development is based on the so called container/component
architecture. A container is a software entity that runs within the server and is responsible
for managing specific types of components (Ahmed & Umrysh, 2002). It provides several
services to the J2EE components deployed within it, such as: managing its lifecycle,
resource pooling, enforcing security, providing more information and services through
Service APIs. Examples of containers and components fit to them are Applet Container
and applets, Web Container and servlets, Enterprise Container and Enterprise JavaBeans.
The container-component architecture is shown in figure 1.

Figure 1 - The J2EE Container/Component Architectur e

A specification is issued by the Java community through a process called Java Community
Process (JCP), which is the attempt of Sun Microsystems to involve the international Java
community in developing Java specifications. Its introduction took place in 1998 and, since
then, it has involved, on a membership basis, over 700 corporate and individuals in
participating in a series of steps designed to produce high-quality, widely accepted Java
specifications. The membership is regulated through an agreement, the Java Specification
Agreement (JSPA), between the new member and Sun Microsystems. A fee is due for the
member. It varies according to the nature of the member, decreasing respectively for
commercial entities, educational, governmental or non-profit organizations and individual
members. A list of things a member can do, include: submit proposals, provide feedback
on others’ proposals, implement specifications and administrate the process. The JCP is
overseen by Sun Microsystems through The Process Management Office (PMO). Its main
duty is to manage the daily running of the program. The PMO works in coordination with
the Executive Committee (EC) to supervise the lifecycle of a proposed specification. Sun
Microsystems has a permanent seat in the EC, while the other 15 seats are elected: 5 of
them are replaced every year, the remaining 10 are ratified. The lifecycle of a successful
specification, from its first submission to its maintenance, follows the steps resumed in
figure 2.

Figure 2 - Lifecycle of a Specification Under the J ava Community Process

After the submission by a member, the EC checks that the information is in order and it
does not conflict with an existing specification or JSR. If so, the EC posts the JSR to the
JCP Web site for review. The proposal can be accepted, rejected or deferred. If this step is
passed, a Call For Experts, aimed at forming the Expert Group (EG) in charge for
producing an Early Draft in 30-90 days, is open for 15 days. The EG is formed by the EC,

choosing a subset of experts among the ones nominated by other members. Before a
Final Release is reached, the draft is revised several times, first by the participants and
then by the public. Afterwards, the maintenance phase is composed of the activities of
monitoring feedback from the Java community, including clarifications and requests for
major enhancements and bug fixes, and proposing changes to the specification. Other
than the specification document, the JCP produces a reference implementation and a
compatibility test suite.
The JCP has often been positively judged by the community of java developers as a
means for being involved and sharing ideas with other developers. Some criticism has
been expressed regarding the membership fees and the democracy in the process. The
formers, even though Sun Microsystems claims that they are only collected to cover the
administrative costs, have been judged too high for smaller companies and academies.
The latter, according to some detractors, is scarce or lacking due to the overly strict control
exerted by Sun Microsystems in the process (Philion, 1999).

The Specification and Some Related Implementations
The JSR 168 starts giving some basic definitions, such as the ones for portal, portlet and
portlet container. A portal is defined as “A web based application that – commonly -
provides personalization, single sign on, content aggregation from different sources and
hosts the presentation layer of Information Systems”, while a portlet as “a Java technology
based web component, managed by a portlet container, that processes requests and
generates dynamic content”. “A portlet container runs portlets and provides them with the
required runtime environment”. To understand how these concepts are related, a typical
working example, involving all such entities, is provided. Briefly, the portal receives the
HTTP requests from the user-agent (the Web browser). If the request contains an action
targeted to a specific portlet, the request is routed to the portlet through the portlet
container, which is responsible for obtaining content fragments. The mark-up fragments
generated by all the portlets included in the portal page are aggregated by the portal to
compose the complete page, which is sent back to the client. If a caching mechanism is
enabled, for portlets whose content is not changed, the previous mark-up available is
used, instead of generating it again, thus saving time.
The portlet container is responsible for handling the portlet lifecycle. To elaborate, the
portlet must implement several methods invoked by the portlet container on the
occurrence of several events. In particular, there are methods for initializing and destroying
the portlet, for defining the actions to undertake in response of user-interaction and for
generating the mark-up fragment. The JSR 168 API provides a generic class which can be
extended by the portlet developer, whose name is GenericPortlet.
As for the Relation with other J2EE technologies, it is worth noting that the
container/component architecture is fully applied in the context of portal and portlets: a
portlet represents a component and the portlet container the container. The specification
emphasizes the relation, with analogies and differences, between a portlet and a servlet.
The concept of a portlet is very similar to the that of a servlet. In particular, they both are
Web components. In spite of this similarity, and in spite of the completeness of the
Servlet/JSP specification, it has been necessary to define a new specification to deal with
concepts related to portlets and portals, due to several differences among portlets and
servlets. The most important of them are:

• Portlets only generate mark-up fragments, not complete documents. Nevertheless,
portlets can exist many times in a portal page.

• Servlet/JSP specifications do not define modes or states.
• Portlets are not directly bound to a URL.

In spite of the above differences, the presence of a strong similarity, has allowed the
participants to the JCP to completely define the portlet API as a new layer constructed on
the Servlet/JSP API.
An important analogy between servlets and portlets is in the independence between their
development and their deployment. Actually, this independence is a fundamental matter of
J2EE philosophy. For all J2EE components, the deployment phase foresees the
packaging of all of its files in a compressed archive together with a special XML file, called
Deployment Descriptor, which holds some information useful in the deployment process. A
set of portlets can be packaged together and deployed on a portlet container. The
deployment descriptor holds both general information on the portlet application, including
the definitions of all the portlets, custom portlet modes and window states and user
attributes, and information about each portlet, such as name, title, portlet preferences,
information about security, etc.
The specification defines the portlet modes and the window states. A portlet is developed
to display some content to accomplish a task and it may include one or more screens that
the user can navigate and interact with, or it may consist of static content that does not
require any user interaction. Besides performing the task they have been developed for,
the portlets could perform some more standard tasks, such as allowing user customization
and providing help information about themselves. An indication on which of the above task
the portlet is performing, is given by the portlet mode, whose value can be, respectively,
VIEW, EDIT, and HELP. Portal vendors may define custom portlet modes for vendor
specific functionality. The window state is a value used to define the amount of space a
portlet will be assigned in the page. The output to render is determined by the portlet on
the basis of such a value. Window states can be NORMAL, indicating that the portlet is
sharing the page with other portlets, MINIMIZED, indicating that the portlet should only
render minimal output, such as only its title, or MAXIMIZED, when the portlet has plenty of
space available and it may be the only one displayed on the screen. Portal vendors may
define custom window states.
As mentioned before, the portlet container must provide the portlet with a suitable runtime
environment. This means that a portlet might obtain information and services from the
container. Through the provided interface, it is possible to access context initialization
parameters, retrieve and store attributes, obtain static resources from the portlet
application and obtain a request dispatcher to include servlets and JSPs. It is worth noting
that the portlet container provides the portlet with personalization support through the
availability of several user information, which can include, for example, name, email,
phone or address of the user. Support is offered also for storing portlet preferences.
Personalization data can be defined in the deployment phase through the coding of the
preferences in the Deployment Descriptor. This characteristic offers the chance to define
different personalization data for different portlet deployments.
Security in portlet applications is largely based on the same mechanisms provided by the
underlying servlet container. Authentication and role handling mechanisms leverage on it.
As for the servlets, portlets can obtain the user name used by the client for the
authentication and its role. Additionally, there is a mechanism to protect the content of
portlets, for content integrity (preventing data tampering in the communication process) or
for confidentiality (preventing reading while in transit). This mechanism allows the
definition of requirements for the transport layer and makes use of Secure Socket Layer
(SSL).
Several commercial and Open Source solutions are now available for enterprises or
service providers that want to offer their services through a Web portal of the second
generation. Several portal implementations, developed with different technologies, have
been considered for a survey on the adoption of WSRP and JSR 168, as shown in table 1.

Product Website License
WSRP

Support
JSR 168
Support

BEA
WebLogic
Portal

http://www.bea.com/framework.jsp?CNT=index.htm&
FP=/content/products/weblogic/portal

Commercial
(free to try) YES YES

eXo
Platform http://www.exoplatform.org

Open
Source
(Gnu GPL) YES YES

IBM
WebSphere
Portal http://www-306.ibm.com/software/genservers/portal/ Commercial YES YES

PHP-Nuke http://phpnuke.org

Commercial
(free with
adverts) NO NO

Apache
Jetspeed II http://portals.apache.org/jetspeed-2/

Open
Source
(Apache
License) YES* YES

Microsoft
SharePoint
Portal
Server office.microsoft.com/sharepoint/ Commercial YES NO
Oracle
Application
Server

http://www.oracle.com/lang/it/appserver/portal_home.
html Commercial YES YES

* The basic version of Jetspeed II does not support WSRP. The integration of the Apache WSRP4J
framework is necessary.

Table 1 – Support of Standards in Web Portals

As it is manifest from the above table, a great part of the most popular Web portals are
Java-based systems conformant to the JSR 168. The reason for the success of Java and
the wide adoption of the specification is probably due to the J2EE component-oriented
architecture, particularly fit for the duties of a Web-portal, and the great effort of the
developers, including worldwide enterprises, contributing to the specification. In most
cases, solutions supporting JSR 168 also support WSRP standard. This often means that
portlets developed with JSR 168 API and deployed in a portal that supports both
standards, can be consumed remotely through WSRP with no additional effort from the
developer.
Two of the analyzed products, PHP-Nuke and Microsoft SharePoint Portal Server, do not
support JSR 168, since they are not J2EE based solutions. Microsoft SharePoint Portal
Server supports WSRP standard. It also has a component-based architecture, whose
basic components are called Web Parts, which work similarly to portlets.
All of the surveyed portals come with a basic set of portlets. Anyway, the presence of the
standards has boosted the birth of several projects, aimed at the development of set of
portlets and of portlet development kits.

Future Trends
The development of the market of the enterprise portals has definitely benefit from the
presence of standards and specifications, such as WSRP and JSR 168. The success of
JSR 168 and, in general, of all the Java specifications is due to the fortunate choice made
by Sun Microsystems to institute JCP, a successful program which has succeeded in
involving commercial enterprises, academic institutions and independent developers in the
development of Java specifications. In spite of the presence of contrary voices, the
success of JCP specifications is witnessed by its widely adoption in the software market.

JSR 168 adopts the J2EE component-based architecture. The API defined in its ambit
leverages on the underlying servlet specification.
The JSR 168, since the issue of its final release, has been adopted in almost all of the
J2EE based Web portals, generating a market for portals, portlets and development kits,
and enhancing interoperability among such products. Some proposals to enhance the
specification, including aspects not currently addressed, have already been suggested by
the community, and will result in the release of a new specification, the JSR 286: Portlet
Specification 2.0. The new specification will extend the previous in regards, among others,
to the support of WSRP 2.0, the definition of portlet filters and of an API for inter-portlet
communication and in regards to the enhancement of caching.

References

Abdelnur A & Hepper S. (2003) JSR 168 - Java Portlet Specification Version 1.0

Ahmed KZ, Umrysh CE. (2002) Developing Enterprise Java Applications with J2EE and
UML. Addison-Wesley. ISBN 0-201-73829-5

Bellas, F. (2004). Standards for second-generation portals. IEEE Internet Computing. 8
(2), 54 – 60.

Hepper S. (2006) JSR 286 - Java Portlet Specification Version 2.0

Java Community Process Program. (JCP) http://jcp.org/en/home/index

OASIS Web Services for Remote Portlets. (2003). http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp

Philion P. (1999). A look inside the Java Community Process. Java World (on-line
magazine). www.javaworld.com/javaworld/jw-10-1999/jw-10-jcp.html

Key Terms

Web Services for Remote Portlets (WSRP): a specification standardizing presentation-
oriented Web services for use by aggregating intermediaries, such as portals, approved as
an OASIS standard in August, 2003

Java Portlet Specification (JSR 168): a specification document developed under the Java
Community Process aimed at achieving interoperability between portals and portlets.

Java Specification Request (JSR): a document managed by The Java Community
Process, submitted by one or more members to propose the development of a new
specification or significant revision to an existing specification

Java 2 Enterprise Edition (J2EE): A Java platform, provided by Sun, for the development
and deployment of distributed enterprise applications

The Java Community Process (JCP): A program by Sun Microsystems aimed at
developing and revising the Java technology specifications, reference implementations,
and test suites, involving the community of Java developers

Portal: A web based application that – commonly - provides personalization, single sign
on, content aggregation from different sources and hosts the presentation layer of
Information Systems

Portlet: A web component, managed by a portlet container, that processes requests and
generates dynamic content.

Portlet Container: an element of the architecture of a Java portal, which runs portlets and
provides them with the required runtime environment.

