
Logging and Analyzing User’s Interactions in Web
Portals

Gennaro Costagliola, Filomena Ferrucci, Vittorio Fuccella, Luigi Zurolo

Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte Don Melillo, I-
84084 Fisciano (SA)

{gcostagliola, fferrucci, vfuccella}@unisa.it, zurololuigi@gmail.com

Abstract. Content Management Systems and Web Portal Frameworks are more
and more widely adopted in Web development. Those kinds of software often
produce Web pages whose layout is divided in sections called, in the case of
Web Portals, “portlets”. Portlets can be produced by different sources and then
aggregated in the same page by the portal. For Web portals, traditional Web
metrics based on page visits can be inadequate for fully understanding user’s
interest, due to the heterogeneity of content and the variety of sources. This
paper proposes a system for evaluating the Web traffic at a deeper level than the
page visit one: the level of the sections, or of the portlets. The interest of the
user in the sections of the page is gauged through implicit interest indicators,
such as, section visibility, mouse movements and other client-side interactions.
Our system is composed of two different products: a framework that,
opportunely instantiated in a Web portal, allows the production of a log, and a
log analyzer. The possible uses and benefits gained by research in the fields of
Web traffic analysis, portal design and usability are investigated in depth.

Keywords: Web, www, metrics, portal, portlet, JSR 168, WSRP, logging, log,
query, log4p

1 Introduction

Content Management Systems (CMS, in the sequel) and Web Portal Frameworks are
more and more widely adopted in the development of Web sites, mainly due to their
characteristic of allowing the Web designers to rapidly develop a Web site and the
portal administrators to rapidly update its contents.

CMS and portal frameworks produce Web pages whose layout is divided in
sections called portlets. This division is not only a layout concern, but it occurs in all
the steps of the generation of the pages: in the case of many portals, the portlets can
be produced by different, eventually remote, sources and then aggregated in the same
page. Thus, we are on the way towards the creation of a portlet market, where
content, or part of it, is produced by third parties and then shown on the publisher’s
Web site.
The technical solution to achieve this organization, is based on the production of
markup fragments (a concern of the portlet), and their aggregation in a single page (a

concern of the portal). The development of standards and specifications, such as JSR
168 [17] and WSRP [24], has helped to this extent. A noteworthy example of a Web
site, whose layout demonstrates the use of a portal framework in its development, is
that of Yahoo. A screenshot of its home page is shown in figure 1.

Fig. 1. The Yahoo home page and its sections.

As a result of the aggregation, a portal page can contain a highly heterogeneous
content, taken from various portlet producers. For Web sites developed with CMS and
portal framework technology, traditional metrics based on page visits can be
inadequate to fully understand user’s interest: new forms of metrics are needed. What
we need are metrics which can give information at a deeper level than that of page
visits: the level of the sections, or of the portlets. Unfortunately, at present there is a
lack of these metrics.

This paper presents some tools which make use of new metrics suitable for
describing the behaviour of the visitors on the portal pages. The gathering of such
information is carried out through the use of a framework directly instantiated in the
portal. The framework produces an XML log, which includes raw data, such as the
implicit interest indicators (i. e. any interaction of the user with the portlets) and the
visibility of the portlets in the pages, captured when the users browse the portal pages.

The logs are analyzed through a suitable log analyzer that obtains some higher
level information by performing several queries on the logs, such as:
� An estimation of the visibility of the portlets in the page.
� The interactivity level of the portlets.

From this information we can obtain an estimation of the interest shown by the users
in the portlets. The analysis can be made available per single user visit and session,
across multiple visits of the same user or for all the users.

Once obtained, these data can be used for multiple purposes. The possible uses and
benefits gained by research in fields of Web traffic analysis, portal design and Web
usability are investigated in depth. Furthermore, the same principle of logging user’s
interactions with a Web-based interface and analyzing the gathered data in order to
obtain interesting information about user’s behavior is applicable in other
circumstances: our approach has been exploited for analyzing the strategies used by
the learners for executing on-line educational tests in an e-learning system.
The rest of the paper is organized as follows: section 2 gives the knowledge
background necessary to understand some concepts on which the system is based. The
system is presented in section 3: the section is composed in two sub-sections, the first
to describe the logging framework and the second for the log analyzer. Lastly, in
section 4, we briefly discuss possible uses and benefits of our system. Several final
remarks and a discussion on future work conclude the paper.

2 Background

A portal is a Web site which constitutes a starting point, a gate to a consistent group
of resources and services on the Internet or in an intranet. Most of the portals were
born as Internet directories (as Yahoo) and/or as search engines (as Excite, Lycos,
etc.). The offer of services has spread in order to increment the number of users and
the time they spend browsing the site. These services, which often require user
registration, include free email, chat rooms, and personalization procedures. In the
history of portals, many authors identify two generations. Second generation Web
portals distinguish themselves from first generation ones for their architecture, which
is component-oriented. In particular, the basic component constituting them, is often
referred to as portlet. The portal is responsible for aggregating information coming
from different sources, local or remote, available in the form of mark-up fragments.
Each of these fragments is produced by a portlet. In the context of Web portals, the
possibility of deploying a portlet in any portal is particularly significant. To this
extent, that is, to achieve interoperability among portals, it has been necessary to
define a standard way to develop and deploy portlets. Two main standards have been
defined and widely adopted by producers: the Web Services for Remote Portlets
(WSRP) and the Java Portlet Specification and API (JSR 168). The former is more
oriented to the definition of rules about the use of remote portlets, the latter is focused
on the definition of interfaces for the development of portlets which can run in Java-
based portals.

WSRP defines a Web service interface through which portals can interact with the
remote producer’s portlets. The WSRP 1.0 specification was approved as an OASIS

standard in August, 2003. Being based on Web services, several interfaces to adopt
the standard have been developed for the most used technologies (e.g. J2EE, .NET,
and so on).

Most of the Java technologies, part of the Java 2 Enterprise Edition, the platform
for the development and deployment of distributed enterprise applications, follow a
consolidated architectural model, called container/component architecture. This
model offers the chance to develop components and deploy them on different
containers. Both component and containers compliant to specifications can be
developed independently and commercialized by different software vendors, thus
creating a market economy on Java software. Furthermore, several good-quality Open
Source products compete with them. The JSR 168 follows the container/component
model and its adoption has grown until it has become an important reference-point
which cannot be excluded from the projects aimed at the development of Web portals.
Among other things, it defines the architectural model of conformant portals. Its main
constituents are the portlet, which produces content mark-up, the portal, which
aggregates the mark-up, and the portlet container, which manages the portlet lifecycle
and provides an API to the portlets for accessing to a set of services. The typical
architecture for a JSR 168 conformant Web portal is shown in figure 2.

Fig. 2. JSR 168 compliant portal architecture.

3 The System

Our system is aimed at obtaining detailed statistics in order to have a deep analysis of
the user’s interest in the Web portal and, in particular, in the sections which compose
its pages.

Our system is composed of two different pieces of software:
1 A logging framework, called Log4p, to be used by Web portal developers,

which, instantiated in the Web portal, is in charge of capturing information
about user’s behavior during the navigation of the portal and storing it in an
XML-formatted log.

2 A log analyzer, to be used by Web portal administrators, developed as a stand-
alone application, which is responsible for analyzing the data gathered by the
logger.

3.1 Log4p: the Logging Framework

The purpose of the Logging Framework is to gather all of the user actions during the
browsing of the portal and to store raw information in a set of log files in an XML
format.

The framework is composed of a server-side and a client-side module. The client-
side module is responsible for “being aware” of the behavior of the user while he/she
is browsing the portal pages. The server-side module receives the data from the client
and creates and stores log files on the disk.

Despite the required interactivity level, due to the availability of AJAX
(Asynchronous JavaScript and XML), the new technology for increasing the
interactivity of Web content, it has been possible to implement the client-side module
of our framework without developing plug-in or external modules for Web browsers.
Javascript has been used on the client to capture user interactions and the text-based
communication between the client and the server has been implemented through
AJAX method calls. The client-side scripts can be added to the portal pages with a
light effort by the programmer.

The events captured by the framework are the following:
� Actions undertaken on the browser window (opening, closing, resizing)
� Actions undertaken in the browser client area (key pressed, scrolling, mouse

movements)
The event data is gathered on the browser and sent to the server at regular intervals.

It is worth noting that the event capturing does not prevent other scripts present in the
page to run properly.

The server-side module has been implemented as a Java servlet which receives the
data from the client and prepares an XML document in memory. At the end of the
user session the XML document is written to the disk. To reduce the size of log files,
a new file is used every day.

The information model used for the log data is shown in figure 3. The model is
organized per user session. At this level, an identifier (if available) and the IP of the
user are logged as well as agent information (browser type, version and operating
system). A session is composed of page visits data. For every page, the referrer is
logged and a list of events is present. The data about the user interactions are the
following:
� Event type
� HTML source object involved in the event
� Portlet containing the HTML object and its position in the page (coordinates of

the corners)
� Mouse coordinates
� Timing information (timestamp of the event)
� More information specific of the event

Fig. 3. The information model for log data.

An important concern in Web metrics is the log size. In very crowded Web sites, even
simple HTTP request Web logs can reach big sizes. A configuration system, including
the following configuration settings has been conceived above all to reduce log sizes:
� List of events to capture;
� List of portlets to monitor;
� Time interval between two data transmissions from the client to the server;
� Sensitivity for mouse movements;
� Sampling factor (logging is activated only for a random user out of n users).

The configuration is read by the server-side module but affects the generation of the
javascript modules run on the client-side. The architecture of the framework is
graphically represented in figure 4.

Fig. 4. Logging framework architecture.

On the client machine, everything can be done in the Web Browser. The Javascript
modules for event capturing, dynamically generated on the server, are downloaded
and run in the browser interpreter. Data is sent to the server through an AJAX request.
On the server-side, a module called RequestHandler receives it. Once received, a
module called LoggerHandler organizes the XML document in memory and flushes it
to the disk every time a user session finishes.

3.2 The Log Analyzer

The next phase of the data gathering is the data analysis. In our system this is done
through a Web-based stand-alone application, optionally hosted on the same server of
the logging framework, which takes in input the log files.

The analysis phase consists of a series of analysis on the behavior of the user,
starting from the data stored in the log. The analysis can have several aims. Among
them we can cite:
� Giving a better organization to the portal;
� The choice of the contents more suitable to the user or to group of users;
� Usability analysis of the portal.
A deeper analysis on the uses that our system can offer is contained in the next

section.
The analyzer performs queries on the logs to obtain the desired data and then

calculates statistical indicators, shown in the form of charts and tables. Since the log
files are in XML, the query engine has been developed to understand XQuery [25]
language, and has been carried out by using an implementation of the JSR 225 [16].
In the next sub-sections we will show some useful statistics we can obtain using the
system. The module for drawing charts has been developed using a free Java library,
named jCharts [13].

3.2.1 PageCounts

A generic analysis is given by the simple count of page visits. Even though
such a task is easily performed by a lot of already existing tools, page visits count is

an important statistic for our system, since it allows us to understand on which page
the interest of the user is mostly concentrated. Starting from this data, we could
focalize our attention on a subset of the portal pages and perform a deeper, portlet-
based, analysis on them. This statistic is easily obtainable with our analyzer through a
count query on the page elements of our logs.
A sample of page visits chart, drawn using our analyzer, is shown in figure 5.

Fig. 5. Page count chart sample.

3.2.2 Portlet Visibility Time

A more specific analysis can be obtained by calculating the visibility time for each
level of portlet visibility (total, partial, invisible). Portal layouts are usually organized
per columns. A commonly used layout organizes portlets in two columns of the same
size (50%, 50%). Another common layout is composed of three columns (i.e. 25%,
50%, 25% in size). The portal page can contain some other elements, such as, a
header, a footer and an horizontal or a vertical menu or both of them. If the number
and size of portlets is such that the portal page exceeds the size of the browser
window, only a part of the page is shown, while some other parts are hidden and can
be shown through scrolling. Thus, at any time some portlets can have full visibility,
some others partial visibility (only a percentage of the portlet area is visible), while
the remaining are completely hidden to the user.

Every time a scrolling event occurs, our logger records its timestamp and the
position of the portlet in the page. The availability of this data allows us to precisely
calculate the amount of time the portlets were fully visible, partially visible or
completely invisible during the visit.

This information, in the context of a portal, is very useful, since, after knowing which
page has attracted the user more, it let us know his/her interest in the single content
units of the page. Figure 6 contains a chart showing the visibility percentage of the
portlet.

Fig. 6. Portlet visibility chart sample.

When a portlet is partially visible, the chart of figure 6 does not exactly tell us the
extent of the visible and hidden areas of the portlet. Thus, in order to complete the
visibility analysis, we considered it opportune to show another chart summarizing the
visibility percentage of the portlet across users’ page views. This indicator is
calculated as the weighted mean of all the visibility times, using the following
formula:

T

vt
V i

ii∑
=

)*(

(1)

V is the total visibility indicator for the portlet, ti and vi are, respectively, its time and
percentage of visibility in the i-th interval, T is the total time of the page visit.
A sample of the chart is shown in figure 7. For the sake of readability, the bars are
shown in green for high visibility, in yellow for low visibility and in red for scarce
visibility. The elaboration and the queries performed on the log for obtaining the
parameters in (1) , have been reported in appendix.

Fig. 7. Portlet visibility percentage chart sample.

3.2.3 Portlet Interactions

Some portlets can be more informative while others can be more interactive. For
example, an article of an on-line news magazine is supposed to be informative, while
a section containing a form should be more interactive, that is, it should receive more
user interactions than the former. Many people use the mouse as a pointer while
reading on-line news.

Fig. 8. Portlet interactivity level chart sample.

With our tool, we can obtain an information about portlet interaction from a bar

chart. An example is shown in figure 8. In the chart, each bar is composed of three
sections of different color. They represent three different types of interactions:
window, mouse and keyboard events.
Another interest indicator to be considered is the total time a portlet has the mouse
pointer in it. An eye tracking study [7] shows that there is a significant correlation
between the eye movements and the mouse movements: tracking the trajectory drawn
by the mouse pointer could be useful for obtaining the probable trajectory of user’s
eyes, that is, what the user is interested in.

Fig. 9. Portlet mouse pointer focus.

While eye tracking cannot be performed, if not in ad hoc equipped laboratories,
mouse tracking can be easily performed by our tool. All of the mouse movements can
be reconstructed from the log analysis.
With a great number of users, the reconstruction of all mouse movements can be too
onerous. A similar interest indicator can be obtained by just calculating the amount of
mouse movements and the amount of time spent by the user with the mouse pointer
inside a portlet. The number of movements has already been described and charted in
figure 8. As for the amount of time the portlet has the mouse pointer in it, a pie chart,
showing the times of presence of the mouse pointer inside the portlets of the same
page, appears as the most appropriate choice. A sample is shown in figure 9.

4 Related Work, Uses and Applications

The effectiveness of implicit interest indicators is witnessed by several studies in
literature [5; 20]. These works demonstrate the correlation between the implicit
indicators and the actual interest of the user. Furthermore, such studies produce a list
of the most used interest indicators. Some works propose the development of tools for
determining user’s interests. For example, in [1] a proxy server based system is used
to capture client-side interactions. Other portal framework, such as Websphere Portal
Server [22], also analyze the user behavior, but their analysis is based on classical
clickstream metrics.

Some works are aimed at understanding the structure of Web pages in order to
determine page sections. Many algorithms have been presented to this extent. The
purposes of determining page sections include the detection of similarities among
pages, the adaptation of the pages to small screens, the detection of the most
significant content of the page, etc.

Wenyn et al. [23] divide pages in sections to detect similarities between two pages,
in order to prevent phishing. Chen et al. [6] do the same thing in order to better view
Web pages on small screen devices. Blocks in the pages are detected for identifying
the informative sections of the page to reduce storing sizes for search engines [10] or
to eliminate redundant information for Web mining [21]. It is clear that, if efforts
have been made to divide pages in sections, where the pages are explicitly divided in
sections, we can pursue the above discussed objectives and do much more. Once
determined, the indication of user interest, calculated from the log analysis, can be
used for several purposes. The next sub-sections analyze the possible practical uses of
our system in several Web research fields.

4.1 Integrating Web Metrics

Web metrics tell us how the users are using a Web site. E-commerce sites need to
know this information in order to improve their selling capacity. Some of the most
commonly used Web metrics are: the number of page visits, the number of banner or
link clicks, the percentage of users who complete an action, etc.

Unfortunately, clickstream analysis metrics have the following limitations, as
remarked by Weischedel and Huizingh [22]:
� They report activity on the server and not user activity;
� They can overestimate the actual use of Web sites due to spiders activity;
� They do not include the real time spent on the page by the user.

Our system overcomes these problems, in fact, it captures client side activity, can
easily recognize spiders from the absence of mouse movements and records times, in
such a way that it is easy to detect inactivity time due to user absence from the screen.

4.2 Portal Design

The location of the portlets in the portal page has a great importance, since some
portlets can have more visibility than others. An eye tracking study [12], analyzing

the behaviour of users in some browsing tasks, has shown that user’s interest is more
concentrated, at least in the initial phases of page browsing, in the portlets placed on
the top of the first column on the left. In the same study, a complete classification of
the places which are candidates to gain more user interest has been performed. It is
advisable that, if the portal holder wants to emphasize the content of a portlet more
than another, he/she should put these portlets in those places.
Our tool can help in determining the portlets which attract user’s interest more and,
on the basis of this data, it can help portal administrator in placing the portlets in the
pages.

4.3 Personalization of the Portal

Web portal customization is often used to tailor the services of the portal to a single
user or to a group of users. In some cases, the user has the freedom of choosing
his/her favourite portlets to place in his/her home page. In other cases, the interest of
the user can be inferred from the logs, and the pages of the portal constructed in order
to give more visibility to content which matches user’s interests. Our system can help
in the latter case. Moreover, in the case of groups of users, groups can be obtained
through clustering procedures. Our system can be useful for gathering data to obtain
cluster of users.

4.4 Portal and Portlet Usability

Since portlets can be considered small Web applications, the definition of usability
can be extended for portlet usability. Diaz et al. [11] define it as the capability of a
portlet to be understood, learned or used under specified conditions. The implicit
interest indicators can be used to facilitate the task of usability evaluators. Atterer et
al. [1] show many situations in which this is true, for example by using true users
instead of volunteers in the lab. Furthermore, a study [19] states the possibility of
performing a choice among different portlets with similar features, choosing on the
basis of their usability. Our tool can be useful to this extent, in order to isolate the
interactions relative to a given portlet thus evaluating its usability.

The position of the portlets affects the usability of the portal. For example, let us
suppose that a task can be performed by interacting with more than one portlet. The
position of the portlets involved in the task can affect the amount of time necessary to
perform the task itself. A usability study can be aimed at finding the best location for
each of these portlets. Our system allows the usability evaluators to record and
evaluate the action of the users in all of the different portlet arrangements.

Lastly, our tool captures key press events. In the case of portlets with forms, the
data can be used to understand if the user had problems in filling the form. This is
valid for any kind of Web site and not only for portals.

4.5 Logging and Analyzing Learner Behavior in On-Line Testing

An approach similar to the one described so far has been used in on-line testing in
order to log and analyze learner behavior in on-line testing. On-Line Testing, also
known as Computer Assisted Assessment (CAA), is a sector of e-learning aimed at
assessing learner’s knowledge through e-learning means. Tracking learner’s
interactions during the execution of a test can be useful for understanding the strategy
used by the learner to complete the test and for giving him/her advise on how to
perform better in future tests. Several experiments have been performed to this aim
[2; 15; 18] in the past. Our approach for on-line testing is rather similar to the one
used for Web portals: learner’s interactions during tests based on multiple choice
questions have been logged and stored in XML files, then the information gathered is
analyzed and visualized in a suitable chart.

The interactions have been logged by instantiating a slightly modified version of
Log4p in an on-line testing system, called eWorkbook [8]. This system presents the
questions, one at a time, in a Web page. A screenshot of the test interface is shown in
figure10. The learner can browse the test questions by clicking on the next and
previous buttons in the bottom of the page. The page is composed of different sections
(in analogy to portlets) showing, respectively, the stem and the options of the
question. The framework records the interactions of the user with the above described
interface, including response and browsing events and mouse events.

Fig. 10. A Screenshot of the Test Execution.

A chronological review of the test has been made available through a chart,
obtained by showing the salient points of a test execution, synthesized in the
interactions recorded in the log file. This chart shows, at any time, the item browsed
by the learner, the mouse position (intended as the presence of the mouse pointer on

the stem or on one of the options) and the presence of response type interactions,
correct or incorrect. The chart is two-dimensional: the horizontal axis reports a
continuous measure, the time, while the vertical axis displays categories, the
progressive number of the item currently viewed by the learner. The test execution is
represented through a broken line. The view of an item for a determined duration, is
shown through a segment drawn from the point corresponding to the start time of the
view to the one corresponding to its end. Consequently, the length of the segment is
proportional to the duration of the visualization of the corresponding item. A vertical
segment represents a browsing event. A segment oriented towards the bottom of the
chart represents a backward event, that is, the learner has pressed the button to view
the previous item. A segment oriented towards the top is a forward event.

Fig. 11. Graphical Chronological Review of a Sample Test.

The responses given by a learner on an item are represented through circles. The

progressive number of the chosen option is printed inside the circle. The indication of
correct/incorrect response is given by the filling color of the circle: a blue circle
represents a correct response, while an incorrect response is represented through a red
circle. The color is also used for representing the position of the mouse pointer during
the item view. The presence of the mouse pointer in the stem area is represented
through a black color for the line. As for the options areas, the red, yellow, green, blue
and purple colors have been used, respectively, for 1 to 5 numbered options. More
than 5 options are not supported at present. Lastly, grey is used to report the presence
of the mouse pointer in a neutral zone. The graphical chronological review of a
sample test is shown in figure 11.

By analyzing the charts obtained in an experiment carried out during a laboratory
exam involving approximately 80 learners, we can conclude that learners often follow
common strategies for completing on-line tests. In our experiment we have identified
the following three different strategies:

o Single Phase. This strategy is composed of just one phase (a part of the
test execution needed by the learner for sequentially browsing all of the
questions). The time available to complete the test is organized by the
learner in order to browse all the questions just once. The learner tries to
reason upon a question for an adequate time and then gives a response in
almost all cases, since he/she knows that there will not be a revision for
the questions. Eventual phases subsequent to the first one have a
negligible duration and no responses.

o Active Revising. This strategy is composed of two or more phases. The
learner intentionally browses all the questions in a shorter time than the
time available, in order to leave some time for revising phases. The
questions whose answer is uncertain are skipped and the response is left to
subsequent phases. As a general rule, the first phase lasts a longer time
and the subsequent phases have decreasing durations.

o Passive Revising. This strategy is composed of two or more phases. The
learner browses and answers all the questions as fast as possible. The
remaining time is used for one or more revising phases. As a general rule,
the first phase lasts a longer time and the subsequent phases have
decreasing durations.

For both the definition of the strategies and the classification of test instances, the
charts have been visually analyzed by a human operator. The above tasks are rather
difficult to perform automatically, while a trained human operator can establish the
strategy used by the learner from a visual inspection of the charts of the test instances
and giving advice to the learners on how to perform better next time.

Other uses of the above described method are the detection of correlation among
questions and the detection of cheating during tests. The reader can refer to a separate
paper [9] for obtaining a more detailed description on the educational results of our
experiment.

5 Conclusions

In this paper we have presented a system aimed at obtaining and analyzing the data
about the behaviour of the users of Web portals. The system overcomes the limitation
of the simple page visit-based metrics, giving more valuable information related to the
portlets, such as their visibility and interactivity and, consequently, the interest of the
user in them.

The system is composed of two components: a framework for obtaining XML-
based log files and an application for log analysis. Several charts, drawn using the
analyzed data have been shown.

Referencing some recent work in literature, we have argued that our system can be
useful for numerous purposes, such as, integrating Web metrics, optimizing portlet
layout both for all users and for personalization, studying usability of portals and, in a
slightly modified version, analyzing learner behavior in on-line testing. Future work is
aimed at further demonstrating the use of our system in some of these fields.

Finally, an aspect that has been considered, but not yet put into practice, is the
availability of the log data both to the portal and to the portlet producer. At present
some architecture and secure schemas have been taken into account, as the one
proposed by Blundo and Cimato [4], applied for determining banner clicks in
advertising campaigns.

The system has been tested on a portal developed with Apache Jetspeed II [14]
Portal framework.

References

1. Atterer, R., Wnuk, M., Schmidt, A.,: Knowing the User’s Every Move – User Activity
Tracking for Website Usability Evaluation and Implicit Interaction. In Proceedings of the
15th international conference on World Wide Web WWW '06. ACM Press (2006)

2. Bath, J.A.: Answer-changing Behaviour on objective examinations. The Journal of
Educational Research, 61, pp. 105-107, (1967).

3. Bellas, F.,: Standards for Second-Generation Portals. IEEE Internet Computing. 8(2): pp.
54-60 (2004)

4. Blundo, C. and Cimato, S.,: A Software Infrastructure for Authenticated Web Metering.
IEEE Computer (2004)

5. Claypool, M., Le, P., Wased, M., Brown, D.,: Implicit interest indicators. In Proceedings
of the 6th international conference on Intelligent user interfaces. ACM Press (2001)

6. Chen, Y., Xie, X., Ma, W. Y., Zhang, H. J.,: Adapting Web pages for small-screen
devices. IEEE Internet Computing (2005)

7. Chen, M. C., Anderson, J. R., Sohn Moore, M. H.,: What can a mouse cursor tell us
more?: correlation of eye/mouse movements on Web browsing. In CHI '01 extended
abstracts on Human factors in comp. syst. (2001)

8. Costagliola G., Ferrucci F., Fuccella V., Oliveto R.: eWorkbook: a Computer Aided
Assessment System. International Journal of Distance Education Technology. 5 (3). Pp
24-41. (2007).

9. Costagliola G., Fuccella V., Giordano M., Polese G.: A Web-Based E-Testing System
Supporting Test Quality Improvement. In: Proceedings of The 6th International
Conference on Web-based Learning. Pp 272 – 279. (2007).

10. Debnath, S., Mitra, P., Pal, N., Giles, C.L.,: Automatic identification of informative
sections of Web pages. In IEEE Transactions on Knowledge and Data Engineering (2005)

11. Diaz, O., Calero C., Piattini M., Irastorza A.,: Portlet usability model. IBM Research
Report. RA221(W0411-084). ICSOC 2004.pp. 11-15 (2004)

12. Goldberg, J. H., Stimson M. J., Lewenstein, M., Scott, N., Wichansky, A. M.,: Eye
tracking in Web search tasks: design implications. In Proceedings of the 2002 symposium
on Eye tracking research & applications (2002)

13. jCharts, Krysalis Community Project – jCharts. http://jcharts.sourceforge.net/ (2006)
14. Jetspeed 2, Apache Group. Jetspeed 2 Enterprise Portal. http://portals.apache.org/jetspeed-

2/ (2006)
15. Johnston, J.J:: Exam Taking speed and grades. Teaching of Psychology, 4, pp. 148--149

(1977)
16. JSR 225, JSR 225: XQuery API for JavaTM (XQJ). http://jcp.org/en/jsr/detail?id=225

(2006)
17. JSR 168, JSR-000168 Portlet Specification.

http://jcp.org/aboutJava/communityprocess/review/jsr168/ (2003)

18. McClain, L.: Behavior during examinations: A comparison of “A”, “C” and “F” students.
Teaching of Psychology, 10 (2). (1983)

19. Moraga, M. A., Calero, C., Piattini, M.,: Ontology driven definition of a usability model
for second generation portals. In Workshop proceedings of the sixth int. conference on
Web engineering, ICWE’06 (2006)

20. Shapira, B., Taieb-Maimon, M., Moskowitz, A.,: Study of the usefulness of known and
new implicit indicators and their optimal combination for accurate inference of users
interests. In Proceedings of the 2006 ACM symposium on Applied computing SAC '06
(2006)

21. Taib, S.M., Yeom, S. J., Kang, B. H.,: Elimination of Redundant Information for Web
Data Mining. In Proceedings of ITCC 2005, Int. Conf. on Information Technology:
Coding and Computing, Vol 1 (2005)

22. Websphere. IBM WebSphere Portal Server. http://www-306.ibm.com/software/
genservers/ portal/server/index.html?S_TACT=103BEW01&S_CMP=campaign

23. Weischedel, B., Huizingh, E. K. R. E.,: Website Optimization with Web Metrics: A Case
Study. In Proceedings of ICEC '06, the 8th international conference on Electronic
commerce. ACM Press (2006)

24. Wenyin, L., Huang, G., Xiaoyue, L., Deng, X., Min Z.,: Phishing Web page detection, In
Proceedings of Eighth International Conference on Document Analysis and Recognition
(2005)

25. WSRP, OASIS Web Services for Remote Portlets. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp (2003)

26. XQuery, XQuery 1.0: An XML Query Language W3C Candidate Recommendation.
http://www.w3.org/TR/xquery/ (2006)

Appendix

As an example, the pseudo-code procedure used by the log analyzer for obtaining the
portlet visibility percentage chart, follows. Each bar in the chart represents the
percentage of visibility of a portlet across all page views. Those values are calculated
using (1). The procedure assume, simplistically, that all of the analyzed pages contain
the same portlets. Their number is passed as a parameter to the procedure (line 1), and
is used to associate the correct event timestamp (lines 16-18) to portlet data (name
and coordinates).

Every time a user scrolls the page, the percentage of visibility of a portlet changes,
since part or all of its area can fall inside/outside the browser’s client area. On the
initial page load event, and on every scroll event, our log records the coordinates of
each portlet (through the portlet element of the information model, see figure 3).
Through our sample code, for each event element and for each portlet element, portlet
names, coordinates and event timestamps are obtained by querying the log and by
storing the results in the portletNames, coordinates and timestamps vectors,
rispectively (lines 3-7).

1 procedure showVisibilityChart(portletNum)
2
3 portletNames = let $x := //portlet return $x/@name;
4 coordinates = let $x := //portlet return
5 $x/@coordinates;
6 timestamps = for $x in //event where $x/@type="load"

7 or $x/@type="scroll" return $x/@timestamp;
8
9 old_time = timestamps[0];
10 T = 0;
11
12 for(j=0; j < portletNames.length; j++)
13
14 v = calculateVisibilityPercentage(coordinates[j]);
15
16 if (j % portletNum == 0)
17 i = j/portletNum + 1;
18 time = timestamps[i];
19 t = time - old_time;
20 T += t;
21 old_time = time;
22
23 sum{portletNames[j]} += v * t;
24
25 for each (portlet in sum)
26 visibility{portlet} = sum{portlet} / T;
27
28 createChart(visibility);

Once obtained event timestamps and portlet coordinates, the numerator in (1) is

calculated through the iteration of lines 12-23. The partial sum is kept by the sum
associative array (line 23), whose keys are portlet names. The calculation of the
visibility percentage in the i-th time interval vi is delegated, as shown in line 13, to the
calculateVisibilityPercentage sub-routine. The time intervals ti can be easily
calculated by subtracting the (i+1)-th and the i-th timestamps (line 19). Those time
intervals are summed in line 20 to obtain the total time T.

The final results are put in the visibility associative array, as shown in line 25.
Those results are obtained by dividing the partial sums by T.

Lastly, visibility is passed to the createChart sub-routine, which is responsible for
drawing the bar chart (line 27).

